metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(2,2'-biimidazole)cadmium(II) benzene-1,4-dicarboxylate

Qing Wei Wang,^a* Wei Liang^a and Qiong Wu^b

^aDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China, and ^bDepartment of Physics, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: qingweiwang2007@yahoo.com.cn

Received 22 June 2007; accepted 23 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.018; wR factor = 0.049; data-to-parameter ratio = 14.2.

In the title compound, $[Cd(C_6H_6N_4)_2(H_2O)_2](C_8H_4O_4)$, the Cd^{II} atom (site symmetry $\overline{1}$) is chelated by two 2,2'biimidazole (H₂biim) ligands in the equatorial plane and two axial water molecules to result in a *trans*-CdN₄O₂ octahedral geometry. The complex dication and centrosymmetric benzene-1,4-dicarboxylate (bdc) dianion interact *via* O– H···O and N–H···O hydrogen bonds. Centrosymmetric aromatic π - π stacking involving one of the C₃N₂ rings of the H₂biim species also occurs with a short centroid–centroid separation of 3.4164 (14) Å.

Related literature

For a related structure, see: Ding *et al.* (2005). For the ligand synthesis, see: Fieselmann *et al.* (1978). For reference geometrical data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $[Cd(C_6H_6N_4)_2(H_2O)_2](C_8H_4O_4)$ $M_r = 580.84$

Monoclinic, $P2_1/n$ a = 8.336 (2) Å b = 11.009 (3) Å c = 12.688 (4) Å $\beta = 93.674 (3)^{\circ}$ $V = 1161.9 (6) \text{ Å}^{3}$ Z = 2

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*_{min} = 0.596, *T*_{max} = 0.786

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.018 & \mbox{4 restraints$} \\ wR(F^2) = 0.049 & \mbox{H-atom parameters constrained$} \\ S = 1.04 & \mbox{$\Delta\rho_{max}} = 0.30 \ e\ \mbox{\AA^{-3}} \\ 2294 \ reflections & \mbox{$\Delta\rho_{min}} = -0.26 \ e\ \mbox{\AA^{-3}} \\ 162 \ parameters & \end{array}$

Table 1

Selected bond lengths (Å).

Cd1-N4	2.2759 (14)	Cd1-OW1	2.4007 (14)
Cd1-N1	2.3178 (14)		

Mo $K\alpha$ radiation $\mu = 0.99 \text{ mm}^{-1}$

 $0.58 \times 0.53 \times 0.25$ mm

9682 measured reflections

2294 independent reflections

2139 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int} = 0.014$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$OW1 - HW1A \cdots O1^{i}$	0.84	1.88	2.718 (2)	171
$OW1 - HW1B \cdots O2^{n}$ N2 - H2 $A \cdots O1^{iii}$	0.89 0.86	1.97 1.89	2.822 (2) 2.7471 (18)	161 171
$N3-H3A\cdots O2^{iii}$	0.86	1.86	2.6972 (19)	165

Symmetry codes: (i) -x + 2, -y, -z + 2; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) x + 1, y, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXL97* and local programs.

The authors thank Jia-Jun Wang, Ling-Jie OuYang and Ning-Hai Hu for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2453).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, B.-B., Weng, Y.-Q., Mao, Z.-W., Lam, C. K., Chen, X.-M. & Ye, B.-H. (2005). Inorg. Chem. 44, 8336–8345.
- Fieselmann, B. F., Hendrickson, D. N. & Stucky, G. D. (1978). Inorg. Chem. 17, 2078–2084.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2008 [doi:10.1107/S160053680703067X]

Diaquabis(2,2'-biimidazole)cadmium(II) benzene-1,4-dicarboxylate

Q. W. Wang, W. Liang and Q. Wu

Comment

As part of the ongoing study of complexes containing 2,2'-biimidazole (H₂biim) as a ligand (Ding *et al.*,2005), we now report the title compound, (I), which contains Cd^{2+} -containing complex ions, charge balanced by benzene-1,4-dicarboxylate dianions.

The Cd atom (site symmetry $\overline{1}$) in (I) is coordinated by four N atoms of two H₂biim ligands and two O atoms from two water molecules, in a octahedral geometry (Table 1, Fig. 1). The cation and anion interact by way of N—H···O and O—H···O hydrogen bonds (Table 2).

The plane-to-plane distance of 3.26 Å between the C1 imidazol ring and its symmetry equivalent partner at (3 - x, -y, 2 - z), in an offset fashion (slippage = 1.10 Å) indicates a strong π - π interaction (Fig. 2).

Experimental

2,2'-Biimidazole was synthesized according to the literature method (Fieselmann *et al.*, 1978). Benzene-1,4-dicarboxylic acid, 2,2'-biimidazole and cadmium acetate dihydrate were reacted in a molar ratio of 1:2:1. The mixture was stirred for 30 min, then the pH was adjusted to 6.5 with an aqueous solution of NaOH (0.1 *M*). The mixture with a total volume of 21 ml was heated at 433 K for 5 d in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After the reaction mixture was slowly cooled to room temperature at a rate of 5 K h^{-1} , colourless blocks of (I) were obtained.

Refinement

The water H atoms were located in a difference map and refined as riding in their as-found relative positions with free refinement for their U_{iso} values. The other H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (arbitrary spheres for the H atoms). Symmetry codes: (i) 2 - x, -y, 2 - z; (ii) 2 - x, -y, 3 - z.

Fig. 2. The packing diagrame for (I). The dotted lines indicate the hydrogen bonds.

Diaquabis(2,2'-biimidazole)cadmium(II) benzene-1,4-dicarboxylate

Crystal data	
$[Cd(C_6H_6N_4)_2(H_2O)_2](C_8H_4O_4)$	$F_{000} = 584$
$M_r = 580.84$	$D_{\rm x} = 1.660 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 903 reflections
a = 8.336 (2) Å	$\theta = 2.6 - 25.8^{\circ}$
b = 11.009 (3) Å	$\mu = 0.99 \text{ mm}^{-1}$
c = 12.688 (4) Å	T = 293 (2) K
$\beta = 93.674 \ (3)^{\circ}$	Block, colourless
V = 1161.9 (6) Å ³	$0.58\times0.53\times0.25~mm$
Z = 2	

Data collection

Bruker SMART CCD diffractometer	2294 independent reflections
Radiation source: fine-focus sealed tube	2139 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.014$
T = 293(2) K	$\theta_{\text{max}} = 26.1^{\circ}$
ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) or Bruker (1997)?	$h = -10 \rightarrow 10$
$T_{\min} = 0.596, T_{\max} = 0.786$	$k = -13 \rightarrow 13$
9682 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.018$	H-atom parameters constrained
$wR(F^2) = 0.049$	$w = 1/[\sigma^2(F_0^2) + (0.0258P)^2 + 0.5043P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.003$
2294 reflections	$\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$

162 parameters

 $\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

4 restraints Primary atom site location: structure-invariant direct

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	r		-	II. */II
C41	л 1.0000	<i>y</i>	2	O_{1SO} / O_{eq}
Cul	1.0000	0.0000	1.0000	0.02922(7)
OWI	1.08556 (16)	0.14916 (12)	0.87749(10)	0.0465 (3)
HW1A	1.1376	0.1233	0.8272	0.058 (7)*
HW1B	1.1015	0.2283	0.8870	0.061 (7)*
02	0.62681 (16)	0.09753 (13)	1.35814 (11)	0.0526 (4)
01	0.72382 (15)	-0.05438 (15)	1.26778 (11)	0.0510 (4)
N1	1.25379 (15)	-0.08664 (12)	1.01642 (10)	0.0272 (3)
N2	1.48489 (15)	-0.08867 (12)	1.11125 (10)	0.0289 (3)
H2A	1.5591	-0.0698	1.1587	0.035*
N3	1.34980 (16)	0.12255 (13)	1.23815 (11)	0.0352 (3)
H3A	1.4448	0.1088	1.2661	0.042*
N4	1.13014 (16)	0.10607 (13)	1.13365 (10)	0.0321 (3)
C8	0.8710(2)	0.00788 (13)	1.42460 (14)	0.0297 (4)
C7	0.7303 (2)	0.01824 (15)	1.34368 (14)	0.0340 (4)
C9	1.0192 (2)	-0.03370 (17)	1.39653 (14)	0.0342 (4)
Н9	1.0326	-0.0567	1.3271	0.041*
C3	1.33955 (18)	-0.03673 (14)	1.09696 (12)	0.0249 (3)
C1	1.3500 (2)	-0.17504 (15)	0.97813 (13)	0.0322 (3)
H1	1.3222	-0.2257	0.9212	0.039*
C10	1.1479 (2)	-0.04125 (17)	1.47141 (13)	0.0340 (4)
H10	1.2471	-0.0688	1.4518	0.041*
C4	1.27572 (18)	0.06208 (14)	1.15733 (12)	0.0264 (3)
C2	1.4928 (2)	-0.17705 (15)	1.03637 (14)	0.0336 (4)
H2	1.5791	-0.2286	1.0270	0.040*
C6	1.1112 (2)	0.19951 (17)	1.20294 (15)	0.0414 (4)
Н6	1.0202	0.2481	1.2052	0.050*
C5	1.2461 (2)	0.20980 (19)	1.26767 (15)	0.0436 (4)
Н5	1.2644	0.2658	1.3220	0.052*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.02300 (10)	0.03417 (11)	0.02907 (10)	0.00073 (6)	-0.00917 (7)	-0.00343 (6)
OW1	0.0536 (8)	0.0415 (8)	0.0455 (8)	0.0030 (6)	0.0117 (6)	0.0052 (6)
O2	0.0464 (8)	0.0513 (8)	0.0563 (8)	0.0186 (7)	-0.0271 (7)	-0.0148 (7)
O1	0.0353 (7)	0.0740 (10)	0.0412 (8)	0.0118 (7)	-0.0167 (6)	-0.0207 (7)
N1	0.0257 (6)	0.0282 (7)	0.0270 (6)	-0.0006 (5)	-0.0036 (5)	-0.0018 (5)
N2	0.0227 (6)	0.0315 (7)	0.0316 (7)	0.0014 (5)	-0.0058 (5)	0.0000 (5)
N3	0.0281 (7)	0.0417 (8)	0.0340 (7)	0.0040 (6)	-0.0115 (6)	-0.0114 (6)
N4	0.0261 (7)	0.0364 (8)	0.0326 (7)	0.0045 (6)	-0.0061 (5)	-0.0080 (6)
C8	0.0278 (8)	0.0277 (8)	0.0321 (9)	-0.0017 (6)	-0.0102 (7)	0.0019 (6)
C7	0.0297 (9)	0.0391 (9)	0.0317 (9)	-0.0003 (7)	-0.0104 (7)	0.0007 (7)
C9	0.0327 (9)	0.0412 (9)	0.0277 (8)	0.0006 (7)	-0.0057 (7)	-0.0021 (7)
C3	0.0231 (7)	0.0254 (7)	0.0258 (7)	-0.0006 (6)	-0.0023 (6)	0.0019 (6)
C1	0.0343 (8)	0.0297 (8)	0.0322 (8)	0.0014 (7)	-0.0002 (7)	-0.0057 (6)
C10	0.0265 (8)	0.0398 (9)	0.0346 (9)	0.0031 (7)	-0.0052 (7)	-0.0013 (7)
C4	0.0244 (7)	0.0290 (8)	0.0251 (7)	0.0000 (6)	-0.0043 (6)	-0.0017 (6)
C2	0.0315 (8)	0.0297 (8)	0.0397 (9)	0.0055 (6)	0.0023 (7)	-0.0025 (7)
C6	0.0348 (9)	0.0444 (10)	0.0440 (10)	0.0117 (8)	-0.0062 (8)	-0.0160 (8)
C5	0.0415 (10)	0.0463 (10)	0.0412 (10)	0.0083 (8)	-0.0100 (8)	-0.0216 (8)

Geometric parameters (Å, °)

Cd1—N4	2.2759 (14)	N3—H3A	0.8600
Cd1—N4 ⁱ	2.2759 (14)	N4—C4	1.323 (2)
Cd1—N1 ⁱ	2.3178 (14)	N4—C6	1.369 (2)
Cd1—N1	2.3178 (14)	C8—C9	1.385 (3)
Cd1—OW1	2.4007 (14)	C8—C10 ⁱⁱ	1.388 (3)
Cd1—OW1 ⁱ	2.4007 (14)	C8—C7	1.513 (2)
OW1—HW1A	0.8438	C9—C10	1.389 (2)
OW1—HW1B	0.8879	С9—Н9	0.9300
O2—C7	1.249 (2)	C3—C4	1.451 (2)
O1—C7	1.250 (2)	C1—C2	1.360 (2)
N1—C3	1.328 (2)	C1—H1	0.9300
N1—C1	1.370 (2)	C10—C8 ⁱⁱ	1.388 (3)
N2—C3	1.341 (2)	C10—H10	0.9300
N2—C2	1.364 (2)	С2—Н2	0.9300
N2—H2A	0.8600	C6—C5	1.354 (2)
N3—C4	1.340 (2)	С6—Н6	0.9300
N3—C5	1.361 (2)	С5—Н5	0.9300
N4—Cd1—N4 ⁱ	180.0	C9—C8—C10 ⁱⁱ	119.26 (16)
N4—Cd1—N1 ⁱ	104.16 (5)	C9—C8—C7	121.05 (16)
N4 ⁱ —Cd1—N1 ⁱ	75.84 (5)	C10 ⁱⁱ —C8—C7	119.68 (16)
N4—Cd1—N1	75.84 (5)	O2—C7—O1	124.34 (16)
N4 ⁱ —Cd1—N1	104.16 (5)	O2—C7—C8	117.75 (16)

N1 ⁱ —Cd1—N1	180.0	O1—C7—C8	117.90 (16)
N4Cd1OW1	89.10 (5)	C8—C9—C10	120.43 (17)
N4 ⁱ —Cd1—OW1	90.90 (5)	С8—С9—Н9	119.8
N1 ⁱ —Cd1—OW1	88.15 (5)	С10—С9—Н9	119.8
N1—Cd1—OW1	91.85 (5)	N1—C3—N2	111.39 (14)
N4—Cd1—OW1 ⁱ	90.90 (5)	N1—C3—C4	121.26 (13)
N4 ⁱ —Cd1—OW1 ⁱ	89.10 (5)	N2—C3—C4	127.35 (14)
N1 ⁱ —Cd1—OW1 ⁱ	91.85 (5)	C2—C1—N1	109.33 (14)
N1—Cd1—OW1 ⁱ	88.15 (5)	C2—C1—H1	125.3
OW1—Cd1—OW1 ⁱ	180.0	N1—C1—H1	125.3
Cd1—OW1—HW1A	116.5	C8 ⁱⁱ —C10—C9	120.31 (17)
Cd1—OW1—HW1B	129.1	C8 ⁱⁱ —C10—H10	119.8
HW1A—OW1—HW1B	110.8	С9—С10—Н10	119.8
C3—N1—C1	105.55 (13)	N4—C4—N3	111.29 (14)
C3—N1—Cd1	110.01 (10)	N4—C4—C3	121.10 (13)
C1—N1—Cd1	144.33 (11)	N3—C4—C3	127.58 (14)
C3—N2—C2	107.07 (13)	C1—C2—N2	106.66 (14)
C3—N2—H2A	126.5	С1—С2—Н2	126.7
$C_2 = N_2 = H_2 A$	126.5	N2-C2-H2	126.7
C4 N3 C5	106.95 (14)	C_{5} C_{6} N_{4}	109.06(15)
$C_4 = N_3 = H_3 \Lambda$	126.5	C5-C6-H6	125.5
C_{4} N_{3} H_{2A}	120.5	N4 C6 H6	125.5
C_{3} NA C_{6}	120.3 105.74(12)	N4 = C0 = H0	123.3
C4 N4 C6	105.74 (15)	$C_0 = C_3 = N_3$	106.96 (15)
C4—N4—Cdl	111.59 (10)	C6-C5-H5	126.5
C6—N4—Cd1	142.64 (11)	N3—C5—H5	126.5
N4—Cd1—N1—C3	3.63 (10)	C1—N1—C3—C4	179.68 (14)
N4 ⁱ —Cd1—N1—C3	-176.37 (10)	Cd1—N1—C3—C4	-3.15 (18)
OW1—Cd1—N1—C3	92.23 (11)	C2—N2—C3—N1	-0.33 (18)
OW1 ⁱ —Cd1—N1—C3	-87.77 (11)	C2—N2—C3—C4	-179.77 (16)
N4—Cd1—N1—C1	178.95 (19)	C3—N1—C1—C2	0.00 (19)
N4 ⁱ —Cd1—N1—C1	-1.05 (19)	Cd1—N1—C1—C2	-175.44 (13)
OW1—Cd1—N1—C1	-92.45 (19)	C8—C9—C10—C8 ⁱⁱ	0.4 (3)
OW1 ⁱ —Cd1—N1—C1	87.55 (19)	C6—N4—C4—N3	0.15 (19)
N1 ⁱ —Cd1—N4—C4	176.15 (11)	Cd1—N4—C4—N3	-178.11 (11)
N1-Cd1-N4-C4	-3.85 (11)	C6—N4—C4—C3	-177.99 (15)
OW1-Cd1-N4-C4	-95.99 (11)	Cd1—N4—C4—C3	3.75 (19)
OW1 ⁱ —Cd1—N4—C4	84.01 (11)	C5—N3—C4—N4	0.0 (2)
N1 ⁱ —Cd1—N4—C6	-1.1 (2)	C5—N3—C4—C3	177.98 (17)
N1—Cd1—N4—C6	178.9 (2)	N1—C3—C4—N4	-0.4 (2)
OW1—Cd1—N4—C6	86.8 (2)	N2—C3—C4—N4	179.02 (15)
$OW1^{i}$ Cd1 N4 C6	-93 2 (2)	N1—C3—C4—N3	-178 18 (15)
$C_{0} = C_{8} = C_{7} = C_{0}$	-151 17 (18)	$N_2 = C_3 = C_4 = N_3$	1 2 (3)
	29.4 (2)		0.2 (2)
C10"—C8—C7—O2	28.4 (2)		-0.2 (2)
C9—C8—C7—O1	30.0 (3)	C3-N2-C2-C1	0.31 (18)

C10 ⁱⁱ —C8—C7—O1	-150.43 (18)	C4—N4—C6—C5		-0.2 (2)
C10 ⁱⁱ —C8—C9—C10	-0.4 (3)	Cd1—N4—C6—C	5	177.10 (16)
C7—C8—C9—C10	179.16 (16)	N4—C6—C5—N3		0.2 (2)
C1—N1—C3—N2	0.21 (18)	C4—N3—C5—C6		-0.1 (2)
Cd1—N1—C3—N2	177.38 (10)			
Symmetry codes: (i) $-x+2$, $-y$,	-z+2; (ii) $-x+2$, $-y$, $-z+3$.			
Hydrogen-bond geometry (Å	, °)			
D—H··· A	<i>D</i> —	H H···A	$D \cdots A$	D—H···A
OW1—HW1A…O1 ⁱ	0.84	1.88	2.718 (2)	171

OW1—HW1B···O2ⁱⁱⁱ0.891.972.822 (2)161N2—H2A···O1^{iv}0.861.892.7471 (18)171N3—H3A···O2^{iv}0.861.862.6972 (19)165

Symmetry codes: (i) -*x*+2, -*y*, -*z*+2; (iii) *x*+1/2, -*y*+1/2, *z*-1/2; (iv) *x*+1, *y*, *z*.

Fig. 1

